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which depends on the n-vector state x(t), the rn-vector control
u(t), and the p—vector parameter 11 .

~ 
The state is given at

the initial point. At the fina l poi
,2
&, the state and the

parameter are required to satisfy q.V scalar rela tions. Along
the interva l of integration , the state, the contro l , and the
parameter are required to satisfy n scalar differential
equations. Problem P2 differs from Problem P1 in tha t the
state, the control , and the parameter are requ i red to satisf y
k additiona l scaler relations along the interva l of integration ,
Algorithms of the sequential gradient-restoration type
are given for both Problem P1 and Problem P2.

“ -
~~~ Problem P2 enlarges dramatically the number and variety

of problems of optimal contro l which can be treated by
grad i ent—restoration algorithms . V~ indeed , by suitable trans-
formations , almost every known p~bblem of optima l control can
be brought into the scheme of P/oblem P2. This statement applies , for
instance to the following sit-uations: (ii problem s
with control equality coflsVV t r a i nts , (ii) problems with
state equality constraints , ( I i i )’  prob lem s with state-
derivat ive equa Uty constraints , (iv) problems with control
Inequality constraints , (v) problems with state inequality
constraints , and (vi) problems with state-derivative
Inequality constraints.

*~ Eight numerica l examples are presented to illustrate the
performance of the algorithms associated with Problem P1
and Problem P2. The numerica l results show the feasibility
as well as the convergence characteristics of these
algori thms. -

UNCLASSIFIED

- V  ~~~~
__

~~ V I ¶ V  . V V 
9~4 j~ f ~~~~~~~~~~~~~~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~ V



AP— 16

docuznsnt hc~ b.s~ c1~3pDv.drok.ci~e ~zid ~ojø. j~~
18 unlimited.

Gradient Algorithms
1,2for the Optimization of Dynamic ~ystems

A . Mi:1e3

1This work is being contributed to the book Advances in Control
and Dynamic Systems: Theory and Applications, Vol. 16, Edited
by C.T. Leondes, Academic Press, New York , New York, 1979.

work was supported by the Office of Scientific Research ,
Office of Aerospace Research, United States Air Force , Grant
No. AF-AFOSR-76—3075, and by the National Science Foundation ,
Grant No. MCS-76-21657. — 

-

—

--. V -
~~~ 

V . -—
3Professor , Department of Mechanical Engineering and Departr~ent
of Mathematical Sciences, Rice University , Houston,, Texas.
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1. Introduction

In every branch of science , engineering, and economics ,

there exist systems which are controllable, that is, they can

be made to behave in different ways depending on the will of

the operator. Every time the operator of a system exerts an

option , a choice in the distribution of the quantities control-

lin g the system, he produces a change in the distribution of

the states occupied by the system and, hence , a change in the

final state. Therefore, it is natural to pose the following

question: Among all the admissible options , what is the par- 
V

ticular option which renders the system optimum? As an example,

what is the option which minimizes the difference between the

final value and the ini tial value of an arbitrarily specified

function of the state of the system? The body of knowledge

covering problems of this type is called calculus of variations

or optimal control theory . As stated before , applications

occur in every field of science, engineering, and economics.

It must be noted that only a minority of current problems

can be solved by purely analytical methods. Hence, it is

important to develop numerical techniques enabling one to solve

optimal control problems on a digital computer. These numeri-

cal techniques can be classified into two groups: first-order

methods and second-order methods. First-order methods (or

gradient methods) are those techniques which employ at most

I

V 
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____ V V V~~~ V V 

~~~~~~~~~~~~~~ 

~~~~~~~~~~~

— V _  V _V ~~~~~~~ V
_ _S V —



2 AP—16

the first derivatives of the functions under consideration.

Second-order methods (or quasilinearization methods) are those

techniques which employ at most the second derivatives of the

functions under consideration.

Both gradient methods and quasilinearization methods re-

quire the solution of a linear , two-point or multi-point

boundary-value problem at every iteration . This being the

case , progress in the area of numerical methods for differen— 
V

tial equations is essential to the ef ficient solution of

optimal control problems on a digital computer.

In this paper , we review recent advances in the area of

( gradient methods for optimal control problems . Because of

space limitations, we make no attempt to cover every possible

technique and every possible approach , a material impossibility

in view of the large number of publications available. Thus,

except for noting the early work performed by Kelley (Refs. 1-2)

and Bryson (Ref s. 3-6), we devote the body of the paper to a

review of the work performed in recent years by the Aero—

Astronautics Group of Rice University (Refs. 7-34).

Also because of space limitations, we treat only single

subarc problems. More specifically , we consider two classes

of optimal control problems, called Problem P1 and Problem P2

for easy identification.

Problem P1 consists of minimizing a functional I which

_____ _____________  _______ ___ I
— 
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3 AP—l6

depends on the n—vector state x(t), the rn—vector control

u(t), and the p-vector parameter ~~~. The state is given at

the initial point. At the final point, the state and

the parameter are required to satisfy q scalar relations.

Along the interval of integration , the state, the control ,

and the parameter are required to satisfy n scalar differ-

ential equations . Problem P2 differs from Problem P1 in

that the state,the control, and the parameter are required to

satisfy k additional scalar relations along the interval of

integration. Algorithms of the sequential gradient-restoration

type are given for both Problem Pl and Problem P2 .

1.1. Approach. The approach taken is a sequence of two—

phase cycles , composed of a gradient phase and a restoration

phase. The gradient phase involves one iteration and is de-

signed to decrease the value of the functional , while the con-

straints are satisfied to first order. The restoration phase

involves one or more iterations , and is designed to force

constraint satisfaction to a predetermined accuracy , while the

norm squared of the variations of the control and the parameter

is minimized , subject to the linearized constraints.

The principal property of the algorithms presented here

is tha t a sequence of feasible suboptima l solutions is produ-

ced . In other words, at the end of each gradient-restoration

cycle, the constraints are satisfied to a predetermined accu—

racy. Therefore, the values of the functional I corresponding

V -~~~ V -~~~~~~ - -  
V
~~~~-



4 AP-16

to any two elements of the sequence are comparable .

The stepsize of the gradient phase is determined by a

one-dimensional search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one—

dimensional search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

restoration phase preserves the descent property of the gra-

dient phase. As a consequence , the value of the functional I

at the end of any complete gradient—restoration cycle is

smaller than the value of the same functional at the beginning

of that cycle.

1.2. Time Normalization. A time normalization is used

in order to simplify the numerical computations. Specifically,

the actual time 0 is replaced by the normalized time t =

which is defined in such a way that t = 0 at the initial point

and t=l at the final point. The actual final time T , if it is

free , is regarded as a component of the vector parameter 11 to

be optimized. In this way , an optimal control problem with

variable final time is converted into an optimal control prob-

lem with fixed final time.

Ill



5 AP—16

1.3. Notation. In this paper, vector-matrix notation is

used for conci seness.

Let t denote the independent variable , and let x(t), u(t),

ir denote the dependent variables. The time t is a scalar , the

state x(t) is an n-vector , the control u(t) is an rn—vector,

and the parameter T is a p—vector . All vectors are column

vectors.

Let h(x,u,rr ,t) denote a scalar function of the arguments

x,u,rr ,t. The symbol h
~ 

denotes the n—vector function whose

components are the partial derivatives of the function h with

respect to the components of the vector x. Analogous defini-

tions hold for h
~ 

and hT.

Let w (x ,u,T ,t) denote an r-vector function of the arguments

x,u,T ,t.The symbol 
~~ 

denotes the n x r  matrix function whose

elements are the partial derivatives of the components of

the vector w with respect to the components of the vector x.

Analogous definitions hold for the symbols w~ and

The dot sign denotes derivative with respect to the time,

that is, c=dx/dt. The symbol T denotes transposition of

vector or matrix. The subscript 0 denotes the initial point,

and the subscript 1 denotes the final point.

__________V— V— V.—-— V V __ _ _V__V_V__ V_Vr
~
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6 AP—l6

1.4. Outline. Section 2 contains the statements of

Problem P1 and Problem P2. Section 3 gives a description of

V the sequential gradient-restoration algorithm. Section 4

discusses the determinations of the basic functions for the

gradient phase and the restoration phase. Section 5 considers

the determination of the stepsizes for the gradient phase

and the restoration phase. A summary of the sequential

gradient-restoration algorithm is presented in Section 6.

The experimental conditions are given in Section 7. The

numerical examples for Problem P1 are given in Section 8; and

the numerical examples for Problem P2 are given in Section 9.

Finally, the discussion and the conclusions are presented in

Section 10.

I
I
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2. Statement of the Problems

Problem P1. This problem consists of minimizing the functional

Cl

1= ~ f(x ,u,ir ,t)dt + [g(x ,~r ,t)]1, (1)

J o

with respect to the state x(t), the control u(t), and the

parameter ~ which satisfy the differential constraints

0 < t < l , (2)

the initial conditions

x(0) given, (3)

and the final conditions

[~ (x,~~,t)]1=0 . (4)

I
In Eqs. (l)-(4), the quantities I,f,g are scalar , the function

~ is an n—vector, and the function ‘~ is a q—vector. Eqs.

(2)-(4) constitute the feasibility equations for Problem P1.

V ~V~~~~~~~~~~~ V V 
V ~V ’ 

_
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Problem P2. This problem is an extension of Problem P1,

which arises because of the inclusion of the nondifferential

constraints

S(x,u,ir ,t)=0 , 0 < t < l , (5)

to be satisfied everywhere along the interval of integration.

Here , the function S is a k-vector , k<m. Eqs. (2)-(5) cons—

titu’e the feasibility equations of Problem P2.

Problem P2 enlarges dramatically the number and variety

of problems of optimal control which can be treated by

gradient-restoration algorithms. Indeed , by suitable trans~-

formations , almo st every known problem of optimal control can

be brought into the scheme of Problem P2. This statement

applies, for instance, to the following situations: (i) prob—

lems with control equality constra ints, (ii) problems with

state equality constraints , (iii)problems with state—derivative

equality constraints , (iv) problems with control inequality

constraints, (v) problems with state inequality constraints, V

and (vi) problems with state—derivative inequality constraints.

For an illustration of the scope and range of applicability

of Problem P2, the reader is referred to Ref. 19 and Ref s.

25—29.

2.1. Remark. For both Problem P1 and Problem P2, the

number of final conditions q must satisfy the following relation:

_ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  

I 

- -‘,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V V

-V 
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9 AP—l6

q<n -i- p~~< n + p ,  (6)

where the symbol p~ denotes the number of components of

the parameter ~r present in the final conditions.

2.2. Remark. Problem P1 can be regarded as a particular

case of Problem P2, which arises by deleting Eq. (5). This

being the case, the analytical derivations presented here

refer only to Problem P2. The corresponding analytical deri-

vations for Problem P1 can be obtained by setting

S~~ 0 , (7)

5X °’ S~~E 3 , S~~~0 ( 8)

in the equations of Problem P2. However , the differentiation

between Problems P1 and P2 is invoked later on in the paper ,

in the section dealing with the solution of the linear , two-

point boundary—value problem (LTP-BVP). This is necessary

for computational efficiency.

2.3. Augmented Functional. From calculus of variations,

it can be seen that Problem P2 is one of the Boiza type, which

can be recast as that of minimizing the augmented functional
4

_ _ _  

IV.
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1 1

(e+ A T (~~_ 
~

) + p TS]dt + ~~~I
I = (XTx)l + (f xT~~+p

Ts_ ~~
Tx)dt + (g~~~T~ ) (9)

I subject to (2)-(5). In Eq. (9), A ( t )  is a variable Lagrange

multiplier (an n-ve;tor), p(t) is a variable Lagrange multi-

I plier (a k-vector), and ~i is a constant Lagrange multiplier

I (a q—vector).

V

. 2.4. First-Order Conditions. Let the multipliers X(t) ,

I p(t), ~i be chosen consistently with

I X _ f
~~

+4t
~
X _ S

~
P= 0 , 0 < t < l , (10)

I (~X + g ~~+1P~ P)1 =O. (11)

I Then, the optimal control u (t) and parameter ~ satisfy

the following relations :

I
0 < t < l , (12)

I

41n Eq. (9), it is tacitly assumed that the initial conditior~(3) are satisfied . The second form of Eq. (9) arises after
the customary integration by parts is performed.

S.

- ~~~~~~~~~~~~~~~~~~~~~~~ 
4
~~~~~~~~~~~~~~~~~~~~~~~~~~~V 

~~~~~~~~~~~~~~~~~~~~~~~ 
V



I
1 11

1
I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 13)

I Eqs. (lO)-(l3)constitute the optimality conditions for Problem P2.

2.5. Two-Point Boundary~~alue Problem. The system

I (2)- (5) and (lQ)-(13)constitutes a nonlinear, two-point boundary-

value problem in which the unknowns are the functions x(t),

I u(t), -it and the multipliers X(t) , p(t) , i i. Only for particular

I 
cases , closed-form solutions are possible. In general, nume-

rical methods must be employed.

I Depending on whether these numerical methods employ at

most the f irst derivatives or at most the second derivatives

of the functions under consideration , two classes of algorithms

I 
can be developed : first-order algorithms (also called

gradient methods) and second-order algorithms (also called

I quasilinearization methods). As stated in the introduction ,

only first-order algorithms are considered here.

1 2.6. Performance Indexes. When solving Problem P2 on a

digital computer , it is necessary to define convergence in a

I numerical sense. In this connection , let the norm squared of

a vector y be defined as

N(y) ~~~~ (14)I
V 

. 
V

V

~~,.
I

I
, 

_ _ _  _ _  

I
~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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Let P and Q denote the scalar performance indexes 5

I (I1
• 

11
P 

~ 
N(x — ~)dt + N(S)dt+N(r~r) 1 , (15)

i J o  J o

I N(~ 
- 

~~~ ~~~ 
- s

~
P)dt + N(f~~- ~~~ 

+

I +N (f — ~~~A + S p ) dt + (g~~+~~~~)1 +N(X+g~+~~~~)1i (16)

I which measure the errors in the constraints and the optimality

conditions , respectively. Observe that

I P 0 , Q = 0 , ( 17)

I for the optimal solution and that

I P.> 0 and/or Q> 0, (18)

I for any approximation to theoptimal solution. This being the case ,

numerical convergence can be defined as follows: an iterative

I algorithm is stopped whenever functions x (t), u (t) ,rr and

multipliers A ( t ) , p ( t ) , ~i are found such that

(19)

where c and c are small, preselected numbers.

~~~~ 
51n Eq. (15), it is tacitly assumed that the initial conditions
(3) are satisfiad.

_____________  
V _,_-_- V . V V V V~V 

V~ _V —

— 

4 .~~~~~ -- 

V



13 AP—16

3. Sequential Gradient—Restoration Algorithm

I The technique employed is characterized by a sequence of

two-phase cycles, composed of a gradient phase and a restor-

I ation phase. The gradient phase is started only when Ineq.

(19—1) is satisfied ; it involves one iteration and is designed

to decrease the value of the functional I or the augmented

I functional J, while the constraints are satisf ied to f irst

order. The restoration phase is started only when Ineq.

1 (19—1) is violated; it involves one or more iterations, each

I 
designed to decrease the constraint error P, while the norm

squared of the variations of the control u (t) and the parame-

I ters -it is minimized . The restoration phase is terminated

whenever the constraints are satisfied to a predetermined ac-

I curacy , that is, whenever Ineq. (19-1) is satisfied.

A complete gradient-restoration cycle is designed so that

I the value of the functional I decreases while the constraints

I are satisfied to the accuracy (19—1) both at the beginning and

at the end of the cycle. Finally, the algorithm as a whole is

terminated whenever Ineqs. (19) are satisfied simultaneously.

3.1. Notation. For any iteration of the gradient phase

I or the restoration phase, the following terminology is adopted :

x(t), u(t), ~ denote the nominal functions; ~ (t ) , ü(t), ~
denote the varied functions; and Ax(t), ~iu(t), t~w denote the V

I displacements leading from the nominal functions to the varied

I
— — 

—- -— ~~~ 

- 

t i_.P~~*__~ ~ ~~~~~~ ~~~~~~~~~~ ~- 

-.

~~~

--- —

~~~ ~~~~ 4 

—
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functions. These quantities satisfy the relations

~c(t) =x(t) +t~x(t), ü(t) u(t)+M.i(t), 1T = 7r+l7r . (20)

Let a be a positive number representing the stepsize

(either the gradient stepsize or the restoration stepsize).

Then , we define the displacements per unit of stepsize as

( follows:

I A C t )  = t~x(t)/c&, B(t) i~u(t)/ct, C = ~~ ir/ a . (21 )

Upon combining (20) and (21), we see that

~ (t) =x(t) + ctA(t), ü(t) =u(t) +aB(t) , ~f= ~~+aC . (22)

I
I
I
I
1 3.2. Desired Properties. The functions ~x(t), L~u(t),

~ir must be determined so as to produce some desirable effect

V at every iteration , namely , the decrease of the functionals I,

I and/or J , and/or P. Thus, the following descent properties

are required:
1•

I < I , and/or 3. < J , and/or < P , (23)

I.

_ _ _ _ _ _ _ _  
V - V  - V V 

•~~~V~ 
V~~~ V V~ ~~~~~~~~~~~~~~~~ -~~~ V

- 
1~~~_~-V~~~ ~V V V

’
~ 

~ ~~~~~~~~~~~~~~~~~ ~“ ‘VV-V V



15 AP—16

where I, J, p are associated with the nominal functions and I,

are associated with the varied functions. In turn, the

functions A(t), B(t), C are chosen so that

~I < 0, and/or 6J < 0, and/or ~p < 0, (24)

where the symbol 5 ( . . . )  denotes the first variation. Then, by

I choosing the stepsize a sufficiently small , the satisfaction

of relations (23) is guaranteed . Ineqs. (23-1), (23—2) and

V (24—1), (24—2) characterize the gradient phase, while Ineqs.

I (23—3) and (24—3) characterize the restoration phase.

3.3. First Variations. Next, we give the expressions

for the first variations of the functionals I, J, P; after

I simple manipulations , omitted for the sake of brevity, they

take the form6’

I ‘Si

~ (f~A + f~B+ f~C)dt + (g~A +g~C)1, 
(25)

I Jo

I
I

6
lmplicit in Eqs. (25) (27) is the assumption A (0) =0 .

4 
7me first variation of the augmented functional J is computed
by varying the functions x (t), i.i (t), 7’ , while holding the
multipliers X(t),p(t), ~.t unchanged.

- —~ .~~~~~ 
~ ‘1 .4-.
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and

= 

~:-~ 
+ + S )TAdt + u~~u

X + S~ p)TBdt

÷[~~~
(f~

_
~~~x +S~P)dt+ (~ +

~~~~
)
1J 

C +[(A ÷g~÷~~~u)
T
A]1, (26)

and

~P/2a = (
~ ~ ) T (~~_ 

~~A- ~~B-

÷~~ s
T(S~A + s~B+s

T
c)dt+[~~

i (~
TA÷ ~~C)]1 (27)

1 0

For the purposesof this paper , Eqs. (25)-(27) must be completed

I by the following relation:

I Cl
~ B

TBdt+CTC (28)

i Jo

I which constitutes a measure of the overall change of the con-

trol and the parameter.

3.4. Remark. Clearly, every iteration of either the

gradient phase or the restoration phase includes two distinct

I operations : (a) the determination of functions A (t), B(t), C

I consistent with the first variation requirements (24); and

(b) the determination of the stepsize a consistent with the

I total variation requirements (23).

I
_____________________ V V - — -V~ V~~ -VV~ VV V_ VV -~~~~~ ~~ -~~----— - V

.4- 4 _ -V - - V .  -~~
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4. Determination of the Basic Functions

There exist an infinite number of combinations of fun-

ctions A (t), B(t), C capable of satisfying the first-variation

inequalities (24), subject to the linearized constraints . In

order to arrive at a unique combination of functions , some

additional requirement must be imposed. This is done through

I 
the formulation of the following auxiliary minimization prob-

lems.

I Problem p3. For the gradient phase, minimize the linear

I 
functional (25), with respect to the perturbations A(t), B(t),

C which satisfy the linearized constraints

I A- A - q ~~B - q ~~C = O , 0 < t < l , (29)

• 
V STA + S TB÷S TC = O , O < t ’ z l, (30)I X U Ti — —

A(O) = 0, (31)

(p~A +~~~C)1 =0 , (32)

I and the quadratic isoperimetric constraint (28).

Note the absence of forcing terms from Eqs. (29)-(32).

I This implies that the nominal functions character izing the

gradient phase satisfy the constraints (2)-(5) within the pre—

I selected accuracy (19—1).

i Problem P4. For the restoration phase, minimize the

quadratic functional (28), with respect to the perturbations

I ACt), B(t), C which satisfy the linearized constraints

I 
1~~~

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _V~~~~~~~~ V VVV -i,— ~~~ -.. V — ~~~~~ 

- -

-__________ . j ~~~~4 4 ~ 4
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0 < t < l , (33)

I STA + S TB+S TC + S = O , 0 < t < l , (34)

A(O) = 0, (35)

(!4~ A +rP~ C+ r P )1 =0. 
(36)

Note that forcing terms are absent from Eq. (35), but are

present in Eqs. (33), (34), (36). This implies that the nominal

I functions characterizing the restoration phase satisfy the

initial conditions (3), but violate one or more of the

I remaining constraints (2), (4), (5). Indeed , it is

I 
the purpose of the restoration phase to correct these viola-

tions, while causing the least possible disturbance in the

I system. This is the significance of the least—square criterion

(28).

I 4.1. First-Order Conditions. Problems 23 and P4 are

I variational problems of the Bolza type , each governed by a

di fferent set of optimality conditions .

I For Problem p3, let the multipliers X(t) , p(t) , ~ be chosen

consistently with

I
X _ f

x +~~x
SxP = O ~ 

0 < t < 1 , (37)

(A  + g + rp p )] = 0. (38)

I x x

I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : .V . 
- 

~~~~~~~~~~~~~
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Then , the control perturbation B(t) and parameter perturbation

C satisf y the following relations :

B+f u
_
~~uX + S uo O , O < t < l , (39)

I C+ 
~~
0
(fT i T i STiP~~

t+ (g~~+ P~~ )~~~~
O . (40)

For Problem P4, let the multipliers X(t), p(t), i be chosen

consistently wi th

i ~
+
~~x

X _ S
xp = 0 , 0 < t < l , (41)

I x~~1 ~ 
( 4 2 )

Then, the control perturbation B(t) and parameter perturbation

I C satisfy the following relations:

I 
B_

~~~
X + S uP = O ~ 

0< t < l ,  (43)

I 
- V V -V V

~~~~~~~~~~~
1 

~~~~~~~~~ 
(44)

I 4.2. Linear, Two—Point Boundary-Value Problem. For the

I gradient phase , Problem P3 is governed by the feasibility

equations (29)— (32) and the optimality conditions (37) (40).

For the restoration phase , Problem P4 is governed by the u ’

1
I

-V 

V

~~~~ 
—
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feasibility equations (33)-(36) and the optimality conditions

(41)-(44). The form of these feasibility equations and

optimality conditions is such that the systems governing

Problems P3 and P4 can be embedded in a single linear system.

For compactness , as well as to facilitate programming , this

point of view is taken here, and the single system governing

both the gradient phase and the restoration phase is written

as follows:

A _ A _ B_
~~~

C+k r
(X_

~~
)=0 s 0 < t < l , (45)

S
~
A + S

~
B+S

~
C+k rS 0

~ 
O < t < 1 , (46)

I A(0) = 0, (47)

I ~~~~~~~~~~~~~~~~~~~ (48)

i 

and

~
_ k

gfx +~Px
A _ S

xP= 0 f o < t < i , (49)

I 
(X+k g~~~+ ll)~ I~1)1=O i (50)

I 
B+k gfu

_
~~u

X + S uP = O ~ 
0 < t < ~~ (51)

I C+ (kgf~~
_
~~Ti

X + S TiP)dt + ~~~~~~~~~~~~~~~ (52)

0

I The constants kg and kr appearing in (45)-(52) take the

I

V - - - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~
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fo llowing values :

gradient phase , k = l , kr =O; (53)

restoration phase, kg = O ~ kr = l
~ 

(54)

For given nominal functions x (t), u(t), ri and given constants

kg and kr .4 Eqs. (45)-(52) define the functions A(t) , B(t), C

and the multipliers X(t), p (t),~ i. As can be seen, we are in the

presence of a linear , two—point boundary-value problem (LTP—BVP),

which can be solved independently of the value assigned to the

1 stepsize a.

I In principle,

the LTP-BVP (45)-(52) can be discussed simultaneously for both

I Problem P1 and Problem P2. However , for computational effi-

I ciency, it is better to separate the discussion of Problem 21

from that of Problem P2. This is because the LTP-BVP for

I Problem P1 can be solved executing q + 1 independent sweeps of

the differential system, while the LTP—BVP for Problem P2

I requires the execution of n + p + l  independent sweeps. Here,

q is the number of final conditions , n is the dimension of the

state vector , and p is the dimension of the parameter vector.

I 
V

1
I

I

_ _  
_ _ _  _ _ _  _ _  _ _ __ _  

I

- -- - - —~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ V~ V V _ _ 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V —
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4.3. LTP-BVP for Problem P1. We employ a backward-

forward integration scheme in combination with the method of

particular solutions (Ref. 7). The technique requires the

execution of q+l independent sweeps of the differential sys-

tem (45)-(52), each characterized by a different value of the

multiplier j~ . Note that Eq. (46) is deleted and that the simpli-

i fications (7)-(8) are invoked in the remaining equations.

The generic sweep is started by assigning particular

I values to the components of j i ;  then , the multiplier X (l) is

I 
obtained from (50). Next, Eq. (49) is integrated backward to

obtain the function A (t). With A (t) known, Eq. (51) is

I employed to obtain B(t), and Eq. (52) is employed to compute

C. Then~ A(t) is obtained by forward integration of (45)

I subject to the initial condition (47). In this way , the

sweep is completed : for the arbitrary value assigned to ~~~~, it

1 leads to the satisfaction of all of the equations of the

system (45)-(52), except Eq. (48).

In order to satisfy Eq. (48) and because the system

(45)-(52) is nonhomogeneous , q +l independent sweeps must be
V 

executed employing q + 1 different multiplier vectors ~~~~~~ ,

i=l ,...,q +l. The first q sweeps are performed by choosing

the vectors ~i ]~~• •  • ‘1
~q 

to be the columns of the identity

matrix of order q. The last sweep is executed by choosing

to be the null vector. As a result, one generates the

V V — ________V -V 
•~V_ ~V V V V - ___________________ ~~ _ V —

Vd V _ _  ~~__  ~~~_  - - -. -~~ ~~~~~ -V ~~~-
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functions and mul tipliers

A~ (t)~ B
~~
(t), ~~~ X

~~
(t), i.i

~~
, i= 1 ,q+ 1. (55)

Now , we introduce the q + l  undetermined , scalar constants

V and form the linear combinations

A(t) = ~k~A~ (t) , B(t) = 
~
k
~
B
~~
(t) , C= Ek~C~ , (56)

A (t) = ~k.X.(t) , = ~k~ii~ , (57)

I where the summations are taken over the index i. The q + l  coef-

I ficients k1 are obtained by forcing the linear combinations (56)

to satisfy Eq.(48), together with the norinalization condition (Ref. 7)

I 
~
k
~~
= 1 .  (58)

I Once the constants k 1 are known, the solution of the LTP-BVP

(45)— (52) is given by (56)— (57).

4.4. LTP—BVP for Problem P2. We employ a forward in-

I tegration scheme in combination with the method of particular

solutions (Ref. 7). The technique requires the execution of

I n + p + 1 independent sweeps of the differential system (45)-(52),

each characterized by a different value of the (n+ p)-vector
V 

a, whose components are the n components of the initial multi-

I plier X(O) and the p components of the parameter C.

The generic sweep is started by assigning particular

values to the components of a, that is, the components of the

I . 

I

V 

_ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _  

I

• ~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ ~~~ V~~~~ V V

-V

V V~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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vectors X (O) and C. Note that A(0) is known , because of (47).

Then , A(t) and X(t),together with B(t) and p(t), are obtained

by forward integration of (45) and (49), subject to (46) and

(51). Note that, at each time station t, Eqs. (46) and (51)

constitute a system of m+k linear relations in which the un—

knowns are the m+k components of the vectors B(t) and p (t).

For this system to have a unique solution, the following dis-

equation must hold:

det {s~
s
~ ] ~

o , 0 < t < 1 .  (59)

As a result of the procedure , the sweep is completed : for the

I arbitrary value assigned to a, it leads to the satisfaction

of all of the equations of the system (45)-(52), except Eqs.

I (48), (50), (52).

I In order to satisfy Eqs. (48), (50), (52) and because the

system (45)-(52) is nonhomogeneous , n +p + l  independent sweeps

I must be executed employing n + p + 1  different vectors

i=1 ,...,n +p+l. The first n+p sweeps are performed by .4

I V

I
8Disequation (59) is obtained from (46) and (51) after elim—
ination of B(t). The resulting linear equation in p(t)

I admits a unique solution providing (59) is satisfied.

1
V

:
~~~~~~

V

V~~~~

- -— V_  ~~~~~~ 
- 4. ~~

_ ~ ‘ 
V

V •
~~~~~~~~~~~~~~

-V

~~~ ~~~~ 
V ’ V V
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choosing the vectors a ,a t-~ be the columns of the1 n +p

identity matrix of order n+p. The last sweep is executed by

choosing a
~~+~~+1 

to be the null vector. As a result, one

I generates the functions and multipliers

I A1(t), B~~(t)~ C~ , X
~~
(t), 

~~
(t), i = i  ,n+p+1. (60)

I Now, we introduce the n +p + l  undetermined , scalar con-

stants k
~ 

and form the linear combinations

V A(t) = Ek~A~ (t)1 3(t) = Ek
~
B
~~
(t) , C= 

~~~~~ 
(61)

X(t) = k
~
A
~~
(t), p(t) = Ek .p .(t) , (62)

I
where the summations are taken over the index i. The n + p + l

I coefficients k
~ 

and the q components of the multiplier ji are

obtained by forcing the linear combinations (61)-(62) to

I satisfy Eqs. (48), (50), (52) together with the normalization

condition (Ref. 7)

Ek~ =l. (63)

I Once the constants k1 are known, the solution of the LTP-BVP

-• 
(45)—(52) is given by (6l)—(62).

1 4.5. Computational Effort. Each sweep involves

integrating 2n differential equations, that is, the rt linear—

I ized state equations (45) and the 11 multiplier equations (49). —

•Ij
I 

_ _ _ _ _ _ _ __ _ _ _ _— 

— 

— _
~_~~~~ v 

1 

~_c~~ ‘~- ~ 
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Since q + 1 sweeps are involved in Problem P1 and n ÷ p + 1

sweeps are involved in Problem P2, the amount of computational

work performed per each iteration, gradient or restorative ,

is proportional to the factor:

I Problem P1, w=2n (q+l); (64)

j Problem P2 , w=2n (n+pV +1 ). (65)

V 4.6. Remark. For both the gradient phase and the res-

toration phase, a linear , two—point boundary-value problem

I must be solved. Once the constants k~ are known , the compo-

site solution is obtained via (56)— (57) or (61)— (62). A

V drawback of this procedure is that the q + 1 particular solu-

I tions (55) or the n +p + 1  particular solutions (60) must be

.~tored at N +l time stations (here, N denotes the number of

I integration subintervals , so that ~t=1/N is the magnitude of

the integration step). Hence, a storage problem arises if

I the system under consideration is relatively large, while the V

I computer memory is relatively limited.

V This drawback can be offset as follows. Once the con-

I stants k1 are known, the multiplier ~.t or the vector

a= [XT(o),CT)T of the composite solution is computed as

follows:

_ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  

V 

L

~~~~~~~~~ VV V~~~~~~~~~~~~ - V V ~~~. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
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Problem 21, ~i. = [k1,k2, ..., kq]
T
; (66)

Problem P2, o= [k1,k2, ..., k~~~ ]~
”. (67)

Then , a supp lementary sweep is executed according to the procedure

of Section 4.3 or Section 4.4. Clearly, the total number of sweeps

increases by one , and the computational work per iteration ,

gradient or restorative, becomes proportional to the factor:

Problem P1, w=2n (q+2) ; (68)

Problem P2, w= 2n(n+p-4-2). (69)

In conclusion , use of this supp lementary sweep increases the

CPU time; nevertheless , depending on the severity of the

storage problem, this course of action might be desirable,

and sometimes essential , with certain systems and certain

computers.

4.7. Descent Properties. The functions A(t), B(t), C

solving Eqs. (45)-(52) are such that the following first-

variation properties hold :9

gradient phase, dI=~~J=-c&Q; (70)

restoration phase , S P = — 2ctP. (71)

In Eq. (70), Q denotes the error in the optimality conditions

(16) at the beginning of the gradient phase. Because of

9mis can be seen by substitution of (45)-(52) into (25)-(27). 
~~VT ~VYV

V V —V V - VV_ V V 
— V

V~ V V V VV~~ 4V — V L._ ~~.4V WIP~~~~
VVV 

~~~_.

4-~’Jt ‘~~~~
‘ ‘
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(37)-(40), the error Q reduces to

1 (1

Q ~ BTBdt+CTC . (72)

I 

J o

In Eq. (71), P denotes the constraint error (15) at the

I beginning of the restoration phase.

I Note that the first variation properties (70) and (71)

are consistent with the requirements (24). This being the

I case, it is possible in principle to determine the gradient

I 
stepsize so that the descent property (23-1) or (23—2) is

enforced in the gradient phase. It is also possible to

I determine the restoration stepsize so that the descent pro-

perty (23-3) is enforced in the restoration phase. For the

details, see the following section.

I
I

- V V VV V VV 

•~ V ~~~~~~~ - -V
~~~~~~V V ~~~~~~~~~~~~~~~~~ 

-V_~
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5. Determination of the Stepsizes

I 5.1. Gradient Stepsize. Suppose that the perturbations

A(t) , B(t), C solving the LTP—BVP (45)-(52) for the gradient

I phase1° are known. Since the nominal functions x(t), u(t), ~

I are known, the one—parameter family of varied functions (22)

can be formed. After substitution of Eqs. (22) into Eqs. (1),

I (9), (15), the following functions of the stepsize are

obtained :

I —~~~~~~~~~1=1 (a) , J=J(a), P=P(a). (73)

Then , a one-dimensional search scheme is applied to (73-2),

I and a value of the stepsize a is selected for which the fol-

I 
lowing relations are satisfied :

J ( a )  <J(O), P(a) ~~P1~ ~ (a) > 0 , (74)

where t is the final time and P~ is a preselected number , not

necessarily small. Satisfaction of Ineq. (74—1) is possible

because of the descent property of the gradient phase. Ineq.

(74—2) is introduced to prevent excessive constraint

~
0Therefore , the constants kg and kr are given by Eqs. (53). u-

~~~~~ V~~~~
VV V ~~ 

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~.. !
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violation. And m eg. (74-3) is required for problems with

free final time.

Prior to the satisfaction of (74), a scanning process is

I employed, leading to the bracketing of the minimum point for

J(a). This operation is then followed by a Herrnitian cubic

interpolation process (Ref. 34), which is stopped whenever the

following relation is satisfied :11

I < or 1Ja (
~~/Jrt ( O ) 

~ 
(75)

I subject to an upper limit for the number of search steps N~ .

Once a stepsize a0 has been selected consistently with either

I (75) or the prescribed upper limit for the number of search

steps, Ineqs.(74) must be checked. If satisfaction occurs,

I then the stepsize a0 is accepted. If any violation occurs , then

I the stepsize a0 must be bisected progressively until satisfac-

tion of (74) is finally achieved .

5.2. Remark. Alternatively , the search for the gradient

stepsize can be performed by replacing the augmented function—

al J with the augmented penalty functional W , defined by

W=J+kP , (76)

11
The symbols £3 and £4 denote small, preselected numbers.

Li 
_ _ _ _ _
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V

where k denotes the penalty constant, to be suitably chosen.

I After substitution of Eqs. (22) into (76), the following

function of the stepsize is obtained : 
V

I
W=W(a). (77)

Then , the combination of scanning process/Hermitian cubic 
V

I interpolation process leading to satisfaction of (75) is re-

placed by a combination of scanning process/Hermitian cubic

I interpolation leading to satisfaction of the following rela-

i 
tiofl:12

I W (a) I < or I~~~
(a)/Wa (0) I ~ ~~~ 

(78)

subject to an upper limit for the number of search steps N3.

I Once a stepsize a0 has been selected consistently with either

(78) or the prescribed upper limit for the number of search
I steps, Ineqs. (74) must be checked . If satisfaction occurs,

I then the stepsize a0 is accepted. If any violation occurs,

then the stepsize a~, must be bisected progressively until

satisfaction of (74) is finally achieved.

12The symbols E~~ and C 6 denote small , preselected numbers.

‘-V.’.

- 
~4V

—V — V~ ~~V~ •~V- V~~~V — ~ TV -VVV_ ~i. 
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5.3. Restoration Steosize. Suppose that the perturba—

tions A(t), B(t), C solving the LTP—BVP (45)-(52) for the

restoration phase13 are known. Since the nominal functions

I x(t), u(t), ~ are known, the one—parameter family of varied

functions (22) can be formed. For this one—parameter family,

the constraint error (15) becomes a fun ction of the form

I P P(a). (79)

Then, the stepsize a must be selected so that the following

relations are satisfied:

< P(0) , ~ (cL) >0. (80)

Satisfaction of Ineq. (80—1) is possible because of the

I descent property of the restoration phase. Ineq . (80-2) is

I required for problems with free final time.

In order to achieve satisfaction of (80), a bisection

I process is applied to the restoration stepsize a, starting

from the reference stepsize a0=l. This reference stepsize

I has the property of yielding one—step restoration for the case

where the constraints (2)— (5) are linear.

_ _ _ _ _  

V -
~~~~

13Therefore , the constants kg and kr are given by Eqs. (54). 
V

_ _ _ _ _ _  _  
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5.4. Iterative Procedure for the Restoration Phase.

The descent property (71) of the restoration phase guarantees

satisfaction of Ineq. (80—1) at the end of any iteration , but

not satisfaction of Ineg. (19—1). Therefore, the restoration

algorithm must be employed iteratively until Ineq . (19—1) is

satisfied . At this point, the restoration phase is termina—

I ted.

5.5. Descent Property of a Cycle. A descent property

I exists for a complete gradient-restoration cycle under the

I assumption of small stepsizes. Let ag denote the gradient

stepsize and ct r the restoration stepsize. Simple manipula-

I tions, omitted for the sake of brevity , show that th~’ gradient

corrections are of O (ag)~ while the restoration corrections

are of O(ara~
). Hence , for ag suf f iciently small , the restor-

I 
ation corrections are negli gible with respect to the gradient

corrections. Therefore , the restoration phase preserves the

I descent property of the gradient phase.

More specifically, let I, I, I denote the values of the

I functional (1) at the beginning of the gradient phase, at the

end of the gradient phase, and at the end of the subsequent

restoration phase. Note that I and I are not comparable,

since the constraints are not satisfied to the same accuracy .

On the other hand , I and I are comparable , and the gradient V

stepsize ag can be selected so that

1 (1. (81)

-V
~~~~ _- V_ VV 

V.4~.__V U
V
~~~

__
~~

V 
~~~ ;— 

~ 
•~_I...___~V



34 AP—l6

This inequality constitutes the descent property of a complete

gradient-restoration cycle. In order to enforce it, one pro-

ceeds as follows . At the end of the restoration phase , one

must verify Ineq. (81). If it is satisfied , the next gradient

phase is started ; otherwise , the previous gradient stepsize

is bisected as many times as needed until , af ter restoration,

m eg. (81) is satisfied .

I
I
I
I
I

~~~~~~~~

V V

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~
V 

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ •~~~~~~~~ 

~
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6. Summary of the Algorithm

I This algorithm includes cycles composed of a gradient

phase and a restoration phase. The objective of each cycle

is to decrease the functional I so that m eg. (81) is satis—

fied , while the constraints are satisfied to a predetermined

accuracy (19—1).

j 
6.1. Gradient Phase. This phase involves a single

iteration, and its objective is to decrease the augmented

I functional J, while the constraints are satisfied to first
V 

order. The gradient phase can be summarized as follows. V

(a) Assume nominal functions x(t), u(t),rr which satisfy

I the constraints (2)-(5) within the preselected accuracy (19-1).

(b) For the nominal functions, compute the vectors

I f and the matrices 
~~ 

q~~, s~ , s~ , s~ along the

interval of integration. At the final point , compute the

vectors 
~~~ 

g~ and the matrices J~ , 
~~~~~

.

I (C) Solve the LTP—BVP (45)—(52),with constants kg and

kr given ~~ Eqs. (53), using the method of particular solu- 
V

tions. In this way, obtain the functions A(t), B(t), C and

the multipliers A(t) , p(t), ~.t.

(d) Using the functions in (c), compute the gradient

stepsize by a one—dimensional search on the augmented fun-

ctional J(ct) until satisfaction of Ineq. (75) occurs. Then,

bisect the resulting stepsize a0 (if necessary), until

V _ _ _ _ _ _ _ _ _ _ _ _  
V V  V~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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V satisfaction of Ineqs. (74) occurs.

I (e) Once the gradient stepsize is known , compute the

varied functions ~c(t) , ü(t), ~ with Eqs. (22).

1 6.2. Restoration Phase. This phase involves one or

more iterations, and its objective is to r2duce the constraint

I error P, until satisfaction of (19—1) occurs. Within a single

I iteration , the objective is to decrease the constraint error

V 
to a level compatible with Ineq . (23—3), while the norm

I squared of the variations of the control and the parameter

I 
is minimized.

The nominal functions x(t), u(t), ~ are chosen as fol-

I lows: for the first restorative iteration , the nominal fun-

ctions are identical with the varied functions obtained at

V the end of the previous gradient iteration; for any subsequent

I 
restorative iteration , the nominal functions are identical

with the varied functions obtained at the end of the previous

I restorative iteration. With this understanding , the resto—

ation phase can be summarized as follows.

I (a) Assume nominal functions x (t), u (t), ir which satisfy

condition (3), but violate at least one of conditions (2) and

I

I (b) For the nominal functions, compute the vectors

(~c - ~~) ,  S and the matrices 
~~~~

‘ 
~~~~

‘ ~~~~ ‘ 
S~ , S~ , S~ along the

interval of integration. At the final point, compute

V~~~I

_ _ _  

________________ I
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the vector ~ and the matrices 
~~~~~~

,

I (c) Solve the LTP—BVP (45)-(52), with constants kg and

kr given by Eqs. (54), using the method of particular solu-

tions. In this way , obtain the functions A (t), 3(t), C and

the multipliers A ( t ) , p ( t ) , ~
I (d) Using the functions in (c), compute the restoration

I stepsize by a one—dimensional search on the constraint error

P(a). To this effect , perform a bisection process on a,

I starting from a0= l , until Ineqs. (80) are satisfied .

I 
(e) Once the restoration stepsize is known , compute the

varied functions ~ (t), ü(t), ~ with Eqs. (22).

I (f) Verify whether the varied functions in (e) satisfy

Ineq . (19—1). If this is the case, the restoration phase is

I terminated. Otherwise, return to (a) and continue the pro—

I 
ces3 until satisfaction of (19—1) occurs.

6.3. Gradient-Restoration Cycle. After the restoration

I phase is completed , verify whether Ineq. (81) is satisfied .

If this is the case , start the next cycle of the sequential

I gradient-restoration algorithm. If not, return to the previous

gradient phase and reduce the gradient stepsize (using a bisection

I process) until, after restoration, m eg. (81) is satisfied.

1 6.4. Computational Considerations. Here, special

conditions relevant to the computer implementation of the V

I sequential gradient-restoration algorithm are presented.

V • V V ~~~~~~ ~~ 
V V V V

VV~
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Starting Condition. The present algorithm can be

I started with nominal functions x (t), u(t), -rr satisfying con-

dition (3) and violating none, some , or all of condi tions (2)( and (4)-(5). If the nominal functions are such that Ineq.

(19—1) is violated , the algorithm starts with a restoration
U phase; hence, the first cycle is a half cycle , involving a

I restoration phase only . On the other hand , if the nominal

functions are such that Ineq. (19—1) is satisfied , the algor—

I i thm starts with a gradient phase; hence , the fir st cycle is

I a complete gradient-restoration cycle.

Bypassing Condition. At the end of the gradient phase

I of any cycle , the constraint error P must be computed . If

Ineq. (19—1) is violated , a restoration phase is started.

I Otherwise , the restoration phase is bypassed , and the next

I gradient phase of the algorithm is started.

Stopping Conditions. For the restoration phase taken

I individually , convergence is achieved whenever Ineq. (19-1) is

satisfied. For the sequential gradient-restoration algorithm

I taken as a whole , convergence is achieved whenever Ineqs.

(19—1) and (19—2) are satisfied simultaneously.

:i~

I
I
I

— I  
V_ 

~~~~~~~~ L V~~~’TI~~~~~

-V 

~~~~~~~~~ 

— _

~~

_

~ 

—V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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7. Experimental Conditions

I In order to evaluate the theory , several examples were

solved . The sequential gradient—restoration algorithms

I associated with Problems P1 and P2 were programmed in

I FORTRAN IV , and the numerical results were obtained in double—

precision arithmetic.

I Computations were performed at Rice University using an

IBM 370/155 computer. For each example, the interval of in—

I tegration was divided into 100 steps. The differential

I equations were integrated using Hamming ’s modified predictor-

corrector method with a special Runge—Kutta starting procedure

(Ref. 35). The definite integrals I, J, P, Q were computed

using a modified Simpson ’s rule. The method of particular

I solutions (Ref. 7) was used to solve the linear , two-point

I boundary-value problems associated with both the gradient

phase and the restoration phase.

I 7.1. Convergence Conditions. The parameters C 1, £2,
14

I 
£4 appearing in Ineqs. (19) and (75) were set at the levels

c1 =E— 08, c2 = E—04, c4 = E—03 . (82)

I
~:

14The symbol E±ab stands for 10±ab~ 
V

j

V - : V .

, V
~~~~~~

.

_ _ _ _ _ _ _  
V - V  V V - V V  -- V ~~~~~~~~~~~~~~~~ -~~~~~ V -V

_ _ _ _ _  -V 
S 
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The tolerance level (82-1) characterizes the restoration

phase; the tolerance levels (82-1) and (82-2), employed in

combination , characterize the algorithm as a whole; and the

tolerance level (82-3) characterizes the one—dimensional

search for the gradient stepsize.

7.2. Safeguards. For the gradient phase, the parameter

I P~ appearing in m eg. (74—2) was set at the level

I P* = 10 (83)

The tolerance level (83) limits the constraint violation

I which is permissible during the gradient phase. Also for the

I gradient phase, the number of Herznitian search steps required

to satisfy Ineq. (75) was subject to the upper bound

N5 < 5 .  (94)

I 7.3. Nonconvergence Conditions. The sequential

i gradient-restoration algori-’-h~LIs were programmed to stop when-

ever violation of any of the following inequalities occurred :15

I
V I

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 15lnequality (87) is characteristic of the IBM 370/155 computer.

I 
V

____________________________________-— - V. V V - V V V V V V V - V -V  V V V V _ _ V -V ~IV~
V ~~~~~~~~ VVVVV_~_ ’~
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< 30 , N < 100, Nr < 10, (85)

Nbg ~ 10, Nbr ~ 10, Nbc ~ 5 . (86)

I M< 0.83E+75 . (87)

Here , N
~ 

is the number of cycles , N is the total number of

iterations , N is the number of restora tive iterations per

cycle , Nbg is the number of bisections of the gradient step—

I size required to satisfy Ineqs. (74), Nbr is the number of

bisections of the restoration stepsize required to satisfy

I Ineqs . (80), Nbc is the number of bisections of the gradient

stepsize required to satisfy Ineq . (81), and M is the modulus

I of any of the quantities employed in the algorithm.

I
I
I

- I

I
I

~~
I

I

— ~
-V
~
-Vi 

V V V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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8. Numerical Examples, Problem P1

V In this section , four numerical examples are described

employing scalar notation. In particular , the symbols

x
~~
(t), i = l ,...,n, denote the components of the state ; the

symbols u
~~
(t), i=i 1,...,m , denote the components of the con-

trol; and the symbols nj, i=1 ,...,p, denote the components

of the parameter.

For all of the examples , a time normalization is used in

I order to simplify the numerical computations. Specifically,

the actual time 0 is replaced by the normalized time

t=0/-r , (88)

I
which is defined in such a way that t = 0 at the initial point

I and t= 1 at the final point. The actual final time r , if it

I 
is free , is regarded as a component of the vector parameter ~

to be optimized. In this way, an optimal control problem with

I variable final time is converted into an optimal control prob-

lem with fixed final time.

I Concerning the convergence history , the terminology is

as follows : N
~ 

denotes the cycle number , Ng is the number of

I gradient iterations per cycle, Nr is the number of restorative

I iterations per cycle, N is the total number of iterations ,

P is the constraint error, Q is the error in the optimality 3
I conditions, and I the value of the functional being minimized.

H I

V V V ~ 
- ~~~~~~~~~~~ ~ ~~~~~ ~~~ ~V VV V

~~~~I V

_________ -V
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Example 8.1. This example involves (i) a quadratic

functional , (ii ) nonlinear di f ferential equations , (iii)

boundary conditions of the fixed endpoint type , and (iv)

fixed f inal time r=1 :

I I=~~~(l+x ~~+x~~+u~)dt , (89)

1 0

= u1 
— x~ , x2 = u1 

— x1x2 , (90)

I
x1(0) = 0, x2(0) = 1 , (91)

I
x1(l) = 1, x2(1) = 2 . (92)

I
The assumed nominal functions are :

I
x1(t) = t, x2(t) = 1 + t, u1(t) = 1 . (93)

I
The numerical results are given in Tables 1-2. Convergence to

I the desired stopping condition occurs in N
~ 

= 3 cycles and

I N= 7 iterations, which include 2 gradient iterations and 5

restorative iterations.

I Example 8.2. This example involves (i) a nonquadratic

functional, (ii) nonlinear differential equations, (iii)

I boundary conditions of the fixed endpoint type, and (iv) fixed

final time r~~l:

I

-V.— -V V— - ~~~ - 
4 ~~ ~~~~ 

— 

— 
— 

-~
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~ (—2cos u1)dt , (94)

Jo

= 2sin u1 —1  , = X ]~ 

V

x1(0) = 0 , x2 (0) = 0, (96)

x1(1) =0 , x2 (l) =0.3. (97)

The assumed nominal functions are:

I x1(t) = 0, x2(t) 0.3t, u1(t) = 0 . (98)

I The numerical results are given in Tables 3-4. Convergence

to the desired stopping condition occurs in Nc = 6 cycles and

I N=l3 iterations, which include 5 gradient iterations and 8

I 
restorative iterations.

Example 8.3. This example is a minimum time problem and

I involves (i) a linear functional , (ii ) nonlinear differential

equations , (iii) boundary conditions of the fixed final state V

I type, and (iv) free final time r. After setting 1T 1
= T , the

problem is as follows:

(99) V
I
I 

= = TT
1

(U~ — x~~) , (100)

I I.

‘

V : V . V V V V V V V V V V V V V V~~~ V V 

~V V
V V
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x1(0) =0 , x2(0) =0 , (101)

x1(l) = 1 , x2 (l) = 0. (102)

The assumed nominal functions are :

x1(t) =t , x2(t) =0 , u1(t) 1, -rr 1=1. (103)

The numerical results are given in Tables 5-6 . Convergence

to the desired stopping condition occurs in N
~ 

= 3 cycles and

N= 7 iterations, which include 2 gradient iterations and 5

I restorative iterations.

I Example 8.4. This example is a minimum time problem and

involves Ci ) a linear functional , (ii ) nonlinear dif fe rential

I equations, (iii) components of the final state partly given

and partly free , and (iv) free final time r. After setting

I 1r
1

= T , the problem is as follows:

I— iT 1, (104)

c1 =ir 1x3cos u1 ~ 2 = i T 1x 3sin u1 , 
,c3 =~ r~ sin u1 , (105)

I x1 (0) = 0, x2(0) = 0, x3 (0) = 0, (106)

x1(l)—l. (107) V

V 
_ _  

-V~~~~~~~~~. _ _ _ _ _ _ _ _ _

- ~~~~~
— 

-~-V—

-

~ -~~- —

-—

-V 
.
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The assumed nominal functions are :

x2 (t)=O , x3 (t) = 0, u1(t)=l, 111 =1. (108)

The numerical results are given in Tables 7-8. Convergence to

the desired stopping condition occurs in N
~ 

= 4 cycles and

N=12 iterations , which include 3 gradient iterations and 9

restorative iterations.

I
I
I
I 

V

~~V~~~ V • V

__________ V -V-V 
~~~~~~ V - ~~~~~~~~~~ 4~~~~~~~~

—
~
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9. Numerical Examples, Problem P2

In this section , four numerical examples are descr ibed

employing scalar notation. The symbols used for Problem P2

are the same as those employed for Problem P1. The time

normalization (88) is employed.

Example 9.1. This example involves (i) a quadratic

I functiona l, (ii) a nonlinear differential equation , (iii) a

state inequality constraint of the first order
16, (iv) bound-

I ary conditions of the fixed endpoint type, and (v) fixed final

time -r= l :

I 1= ~~~(x~~+u~ )dt , (109)

I c1 =x~~— u 1, (110)

I
x1 — 0 . 9 > 0 , (ill)

1,
L x1(0) = 1 , (112)

x1(l) = 1 . (113)

I

means that the first time derivative of the left -hand
side of m eg. (ill) contains the control explicitly . V

V 
-

V 

V
V V 

V~~~~~1~~~~~ :~~~~~~~
4Y

~~~~
; ~~~~~~~~~~~~~~~~~~~~~
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Upon introducing the auxiliary state variable x2 and the

auxiliary control variable u2 defined by (Ref. 25)

x1 —0 .9=x~~, c2 = u 2 ,  (114)

we replace the inequality constrained problem (l09)-(113) with

the following equality constrained problem :

‘ (x~ + u~ )dt , (115)

c2 =u 2, (116)

— u1 
— 2x2u2 = 0 , (117)

x1(0) = 1 , x2(0) = /(0.1) , (118)

x1(1) =1 . (119)

The assumed nominal functions are:

x1(t)=l, x2(t)=/(0.1), u1(t)=l , u2(t)=l. (120)

The numerical results are given in Tables 9—10. Convergence

to the desired stopping condition occurs in N
~ 

= 5 cycles and

N= 12 iterations, which include 4 gradient iterations and 8 V

restorative iterations.

_ _ _ _ _ _
-- V V VV V V — -V

~~V V V — ~ 
— V

-V 
-V .

~~~~ -V-- ~~ 
(-  

~~~~4i~~ %V V-V~ ~~~~
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Example 9.2. This example involves ( i )  a quadratic

1 functional, (ii) linear differential equations, (iii) a state

inequality constraint of the second order17, (iv) boundary

I conditions of the fixed endpoint type , and (v)  fixed final

time t l :  ci
V 

1= 
~ 

u~~dt , (121)

i Jo

~~ 
= x2 , = u1 , (122)

0.15 — x1 > 0 , (123)

I
x1(0) = 0 , x2(0) = 1 , (124)

I
x1(1) = 0 , x2(l) = — l  . (125)

I Upon introducing the auxiliary state variables x3, x4 and the

auxiliary control variable u2 defined by (Ref. 25)

I 0.l5-x1=x~~, c3 = x~~, ~4 = u 2 ,  (126)

I
I 17This means that the second time derivative of the left-hand

side of Ineq. (123) contains the control explicitly , while V
this is not the case with the first time derivative.

I

V 
— -V

~~~~~~~~~~~~ V V~~~~~~~~~~~~~ V -V~V -V~ V~~~f ~~~~~~~~ 
V V V V V V - V  ~~V VV_~~~-V~~-V -VV 

— -V- V-V-V -V.- -V ~~~~~~~~~~~~ ~~~
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we replace the inequality constrained problem (l21)— (l25) with

the following equality constrained problem :

1= ~~ u~~dt , (127)
0

— x2 = U
1 

= = u 2 , (128)

u1 + 2x 3u2 + 2x~ = 0 , (129)

x1(0)=0 , x2 (0)=l , x3 (0)=/(0.l5), x4(0)= —l//(0.60), (130)

x1(1) =0 , x2 (l) =—1 . (131)

I
The assumed nominal functions are:

x1(t) = 0 , x 2 (t )  1 —  2t , x 3 ( t )  = /(0.15) (1— 2t) , (132)

x4(t) = (2t—1)//(0.60), u1(t) = 1 , U
2

( t)  = 0 .  (133)

The numerical results are given in Tables 11-12. Convergence

to the desired stopping condition occurs in N
~ 

= 8 cycles and

N=1 6 iterations, which include 7 gradient iterations and 9

I restorative iterations.

I Example 9.3. This example is a minimum time problem and

involves (i) a linear functional , (ii) nonlinear differential

; I equations , (iii) a state—derivative inequality constraint,

V I

V 
V V 

-V
V V V~~~~~~~~~~ V ~~~~~~~~~~~~ —

-- --V-- V-V- V--V-a ~~~~~~~~~~~~~~~~~ ~
‘

VV~ 
~~~~~~~ 

-
~ -V
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(iv) boundary conditions of the fixed final state type , and (v)

free final time T. After setting 71
1

= T , the problem is as

follows:

I T r
1

~~~ (134)

I = iTlu l = 711(u~ — x~ 
- 0 . 5 )  , (135)

X
2/’ ff

1 ÷ 0 .5  > 0 , (136)

x1(0) = 0 , x2 (0) = 0 , (137)

x1(l) = 1 , x2(l) = —71/4 . (138)

I
Upon introducing the auxiliary control variable u2 defined by

I (Ref. 25)

I X2/711 ÷0.5~~~.12 0 , (139)

we replace the inequality constrained problem (l34)-(l38) with

the following equality constrained problem:

1=71 1 1 (140)

I X
1

lI
l

U
l 

, C 2 l (U
~~V~~~~~

X
~~~~~ 

0.5), (141)

I u~~-x~~-u~~=0 , (142)

x1 (0)  0 , x2 ( 0)  0 , (143)

I

I 
V

V

,
~~~

_ _ _ _ _  V -V V V ~~~~~~~V

- V~ V V V( - V V )~~~~~ V~ V V~ V -V V V
V 

~~~~~~~~~~~~~~~~~~~~ V - V~~~tj ~*~~ V ~~~~~~~~~~~
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x1 ( 1) = 1 , x2 ( 1) = — 71/4 . (144)

The assumed nominal functions are:

x1(t)=t, x2(t) =— (ii/4)t, u1(t)=1 , u2(t)=l , 71
1=1. (145)

The numerical results are given in Tables 13-14. Convergence

j  
to the desired stopping conditionoccurs in N

~~~
6 cycles and

N=l4 iterations, which include 5 gradient iterations and 9

I restorative iterations.

I Example 9.4. This example involves (i) a quadratic

functional , (ii) linear differential equations, (iii) a control

I inequality constraint, (iv) boundary conditions of the fixed

endpoint type, and (v) fixed final time t :

I 1 
V

i (l+x~~+x~~+u~ )dt , (146)

I k1=u 1 — x 2, ~2 u1 — 2x1, (147)

I 6 — u 1 > 0 , (148)

I x1 ( 0 )  = 0 , x2 (0) = 1 , (149)

H I x1 (l)  = 1 , x2 (l) = 2 .  ( 150)

V Upon introducing the auxiliary control variable u2 defined by

I

V ~~~~~~~ VVVV ~~~~~~~~~: 

~~~
-V V 

V V V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~~~~~~~ 

“ V
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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26 — u 1 — u 2 =0 , (151)

we replace the inequality constrained problem (146)-(150)

with the following equality constrained problem :

~~~~~~~~~~~~~~~~~~~~~~~~ (152)

= u1 - X 2 
= u1 - 2x 1 , (153)

6-u 1 -u~~= 0 , (154)

x1(0)=0 , x2 (O)=1 , (155)

x1(l) = 1 , x2(1) = 2 . (156)

The assumed nominal functions are :

x1(t) = St - 4t2 , x2 (t )  1+ 5t - 4t2 , (157)

u1(t) 6(1— t) , u2(t) = 2t . (158)

The numerical results are given in Tables 15—16 . Convergence

to the desired stopping condition occurs in N0= 11 cycles and

N= 24 iterations, which include 10 gradient iterations and 14

restorative iterations.

4
I
I

—4 4.~~

I
V V -V-V -
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Table 1. Convergence history , Example 8.1.

N~ Ng Nr N P Q I

0 0 0 0 0 .72E+ Ol
1 0 4 4 0 . 3 2 E — l 0  0.97E+O0 33 .67701
2 1 1 6 0.84E—l3 0.50E—02 33.46606
3 1 0 7 0.5lE—09 0.4lE—04 33.46484

I
I

Table 2. Converged solution, Example 8.1.

1 X 2 1

I
0.0 0.0000 1.0000 —8 .3428

I 0.1 —0.7862 0.2778 —6 .3676
0.2 —1.3011 —0.2366 —3.8632
0.3 —1.5837 —0 .5625 —1.4845
0.4 —1.6735 —0.7169 0.46821 0.5 —1.6003 —0.7107 1.9931
0.6 —1.3780 —0.5437 3.2522
0.7 —1.0080 —0.2055 4.4920

I 0.8 —0.4877 0.3179 6.0526
0.9 0.1807 1.0416 8.4996
1.0 1.0000 2.0000 13.0496

I
I t=l.00000

- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— V— - 
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Table 3. Convergence history , Example 8.2.

N~ N g N r N P Q I

0 0 0 0 0.lOE+0 1
1 0 4 4 O . l 7 E — 0 8  0 .67E+ 00 —1.11665
2 1 2 7 0.17E—ll 0.34E—01 —1.16519
3 1 1 9 0.llE—10 0.30E—02 —1.16923
4 1 1 11 0.58E—15 0.64E—03 —1.16950
5 1 0 12 0.20E—08 0.l8E—03 —1.16961
6 1 0 13 0.36E—08 0.50E—04 —1.16964

I

Table 4. Converged solution, Example 8.2.

I xl x2 U
1

I
0.0 0.0000 0.0000 1.3333

I 0.1 0.0937 0.0047 1.3049
0.2 0.1856 0.0186 1.2609 V

0.3 0.2742 0.0417 1.2005
0.4 0.3575 0.0733 1.1131

I 0.5 0.4309 0.1128 0.9784 V

0.6 0.4842 0.1589 0.7517 V

0.7 0.4921 0.2082 0.3661 
V

I 0.8 0.4141 0.2544 —0.1521
0.9 0.2381 0.2877 —0.6087
1.0 0.0000 0.3000 —0.8959

I V

I -r= l . 00000

V 
~V -V~

I
V ~~~~~~ 

V V ~~~•~

I V T_
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 5. Convergenge history , Example 8.3 .

N
~ 

Ng Nr N P Q I

0 0 0 0 0.53E+00
1 0 4 4 0.74E—l6 0.53E—01 1.58101
2 1 1 6 0.33E—08 0.l3E—03 1.57080
3 1 0 7 0.28E—08 0.l6E—05 1.57075

I
I
I
I

Table 6. Converged solution, Example 8.3.

I
t xl x2 U

1

I
0.0 0.0000 0.0000 0.9997

I 0.1 0.1564 0.1544 0.9874
0.2 0.3089 0.2937 0.9508
0.3 0.4538 0.4043 0.8907

I 0.4 0.5876 0.4752 0.8087
0.5 0.7069 0.4997 0.7067
0.6 0.8087 0.4752 0.5875
0.7 0.8907 0.4042 0.4538

I 0.8 0.9507 0.2937 0.3092
0.9 0.9874 0.1544 0.1572
1.0 1.0000 0.0000 0.0017

I
I 

V I ~~~~~~ - V
V
~~~~~~~~~~ V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ V V 
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Table 7. Convergence history , Example 8.4.

N N N N P Q Ic g r

0 0 0 0 0.l7E÷Ol
V 1 0 5 5 0.44E—16 0.25E+00 1.83370

1 2 1 2 8 0.29E—09 0.42E—01 1.78266
3 1 1 10 0.39E—09 0.62E—03 1.77262
4 1 1 12 0.lOE—l6 0.92E—05 1.77245

I
I
I

Table 8. Converged solution , Example 8.4.

t xl x2 x3

0.0 0.0000 0.0000 0.0000 1.5708
0.1 0.0016 0.0155 0.1765 1.4133

I 0.2 0.0129 0.0607 0.3486 1.2558
0.3 0.0425 0.1311 0.5121 1.0984
0.4 0.0974 0.2198 0.6630 0.9412

I 0.5 0.1819 0.3180 0.7975 0.7841
0.6 0.2976 0.4161 0.9123 0.6270
0.7 0.4428 0.5046 1.0046 0.4699
0.8 0.6132 0.5748 1.0722 0.3126
0.9 0.8018 0.6196 1.1132 0.1549
1.0 1.0000 0.6346 1.1266 —0.0033

1

.

= 1.77245

~ ~
V’

V~
V

S -~~~~ ~



• - V - V - V - V V V Vr-V. -V

. V\

V 58 A1~—l6

Table 9. Convergence history , Example 9.1.

N N N N P Q Ic g r

0 0 0 0 O.14E+Ol
1 0 3 3 0.52E—09 0.35E+00 1.83569
2 1 2 6 0.l5E—16 0.14E—01 1.66599
3 1 1 8 0.lOE—09 0.24E—03 1.65742
4 1 1 10 0.60E—17 0.15E—03 1.65697
5 1 1. 12 0.96E—18 0.98E—04 1.65678

I
I
I

Table 10. Converged solution, Example 9.1.

I
t x1 x2 U

1 
U

2

I V

0.0 1.0000 0.3162 1.7482 —1.1831
1 0.1 0.9410 0.2025 1.3353 —1.1104I 0.2 0.9095 0.0978 1.0097 —0.9324

0.3 0.9006 0.0246 0.8366 —0.5177
• 0.4 0.9000 —0.0090 0.8067 —0 .1865

0.5 0.9003 —0.0177 0.8104 —0.0018
0.6 0.9000 —0 .0094 0.8135 0.1816
0.7 0.9005 0.0238 0.7864 0.5158
0.8 0.9094 0.0972 0.6442 0.9398
0.9 0.9409 0.2024 0.4360 1.1097
1.0 1.0000 0.3162 0.2470 1.1904

-r = 1.00000

.41.
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Table 11. Convergence history , Example 9.2.

N Nr N P Q I

I 
— —

0 0 0 0 0.22E+02

I l 0 5 5 0.44E—l3 0.llE+00 6.03009
2 1 1 7 0.l5E—l4 0.79E—02 5.93793
3 1 1 9 0.28E—17 0.20E—02 5.93016
4 1 1 11 0.12E—l8 0.74E—03 5.92817( 5 1 1 13 0.15E—20 OV.37E—03 5.92738
6 1 0 14 0.8~ E_08 Q .20E—03 5.92687
7 1 0 15 0 .62EV .

t’
~8 0.12E—03 5.92661

I 8 1 0 16 0.74E 0.52E—04 5.92650

I
I

Table 12. Converged solution, Example 9.2.

I
t x1 x2 x3 x4 u1 U2

• 0.0 0.0000 1.0000 0.3872 —1.2909 —4.4535 1.4461
I 0.1 0.0793 0.6045 0.2657 —1.1375 —3.4592 1.6392

0.2 0.1242 0.3078 0.1606 —0 .9583 —2 .4746 1.9862 
V

0.3 0.1442 0.1105 0.0756 —0.7301 —1.4669 2.6475
0.4 0.1496 0.0145 0.0175 —0.4152 —0.4730 3.6484
0.5 0.1499 —0.0001 —0.0045 —0.0174 0.0375 4.1943
0.6 0.1497 —0.0118 0.0147 0.4010 —0.4405 4.0278
0.7 0.1446 —0.1097 0.0733 0.7483 —1.5262 2.7693
0.8 0.1244 —0.3098 0.1599 0.9688 —2.4681 1.8476
0.9 0.0794 —0.6057 0.2655 1.1403 —3.4508 1.6007
1.0 0.0000 —1.0000 0.3872 1.2909 —4.4354 1.4228

t= 1 .00000
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Table 13. Convergence history , Example 9.3.

N
~ 

Ng Nr N P Q I

0 0 0 0 O.llE+01
1 0 5 5 0.22E—l4 0.2lE—Ol 1.82848
2 1 2 8 0.47E—l5 0.20E—02 1.82290
3 1 1 10 O.83E—l2 0.55E—03 1.82245
4 1 1 12 0.18E—13 0.22E—03 1.82234
5 1 0 13 0.60E—08 0.1OE—03 1.82224
6 1 0 14 0.77E—08 0.39E—04 1.82222 V

I
Table 14. Converged solution, Example 9.3.

t xl x2 U
1 

U
2

0.0 0.0000 0.0000 0.4999 0.4999
0.1 0.0905 —0.0465 0.4916 0.4832
0.2 0.1781 —0.0989 0.4670 0.4317 -‘

0.3 0.2598 —0 .1623 0.4271 0.3389
0.4 0.3331 —0.2401 0.3768 0.1762
0.5 0.4020 —0.3298 0.4020 0.0092
0.6 0.4824 —0.4209 0.4824 0.0000
0.7 0.5788 —0.5120 0.5788 0.0001
0.8 0.6945 —0.6031 0.6945 0.0000

• 0.9 0.8334 —0.6942 0.8333 —0.0007
1.0 1.0000 —0.7853 0.9996 0.0008

1~

1 7 1 1 1.82222 3
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Table 15. Convergence history , Example 9.4.

Ng Nr N P Q I

0 0 0 0 0.38E-1-Ol
1 0 4 4 0.l8E—12 0.36E+00 20.27422
2 1 2 7 0.36E—lO 0.37E—0l 20.19329
3 1 1 9 0.79E—lO 0.96E—02 20.18932
4 1 1 11 0.l2E—1l 0.49E—02 20.18813
5 1 1 13 O.32E—13 0.20E—02 20.18760
6 1 1 15 0.34E—14 0.12E—02 20.18733
7 1 1 17 0.20E—l5 0.63E—03 20.18718
8 1 1 19 0.96E—16 0.50E—03 20.18707
9 1 1 21 0.45E—17 O .24E—03 20.18700
10 1 1 23 0.16E—l6 0.34E—03 20.18693

~~ 
1 0 24 0.29E—08 0.7lE—04 20.18688

Table 16. Converged solution , Example 9.4.

t xl x2 u1 U
2

0.0 0.0000 1.0000 6.0000 0.0000
V 0.1 0.4716 1.5519 6.0000 0.0000

0.2 0.8742 1.9967 5.3504 0.8059
0.3 1.1410 2.2746 4.3155 1.2978
0.4 1.2930 2.4172 3.4641 1.5924
0.5 1.3586 2.4610 2.7629 1.7991
0.6 1.3598 2.4346 2.1838 1.9535
0.7 1.3133 2.3603 1.7031 2.0728
0.8 1.2320 2.2549 1.3012 2.1676
0.9 1.1253 2.1315 0.9618 2.2445
1.0 1.0000 2.0000 0.6710 2.3084

t=l .00000

I
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10. Discussion and Conclusions

In this paper , two members of the family of sequential

gradient—restoration algorithms for the solution of optimal

control problems are presented. These algorithms are of the

ordinary-gradient type. One is associated with the solution

of Problem P1, Eqs. (1)-(4), and the other is associated with

I the solution of Prob lem P2, Eqs. (l)-(5).

Problem P1 consists of minimizing a functional I which

I depends on the n—vector state x(t), the rn—vector control u (t),

and the p-vector parameter it . The state is given at the mi -

I tial point. At the final point, the state and the parameter

I are required to satisfy q scalar relations. Along the inteval

of integration , the state, the control, and the parameter are

I required to satisfy n scalar differential equations . Prob lem V

P2 differs from Problem P1 in that the state , the control ,

I and the parameter are required to satisfy k additional scalar

I relations along the interval of integration.

The importance of Problems P1 and P2 lies in the fact

that a large number of problems of optimal control are covered

by these formulations (Refs. 7-34). In particular , Problem

1 P2 enlarges dramatically the number and variety of problems

of optimal control which can be treated by gradient-restoration

algorithms. Indeed, by suitable transformations, almost every

known problem of optimal control can be brought into the

__________________________ 
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scheme of Problem P2. This statement applies , for instance ,

to the following situations: (i) problems with control

equality constraints , (ii) problems with state equality con-

straints, (iii) problems with state-derivative equality con-

straints , (iv) problems with control inequality constraints,

(v) problems with state inequality constraints , and (vi) prob-

lems with state-derivative inequality constraints. For an

illustration of the scope and range of applicability of

( Problem P2, the reader is referred to Ref. 19 and Refs. 25-29.

The algorithms presented here include a sequence of two-

phase cycles , composed of a gradient phase and a restoration

phase. The gradient phase involves one iteration and is de-

signed to decrease the value of the functional I, while the

constraints are satisfied to first order. The restoration

phase involves one or more iterations and is designed to force

constraint satisfaction to a predetermined accuracy , while

the norm squared of the variations of the control and the

parameter is minimized, subject to the linearized constraints.

The principal property of the algorithms is that they

produce a sequence of suboptimal solutions, each satisfying

V 
the constraints to the same predetermined accuracy . Therefore,

the values of the functional I corresponding to any two ele—

ments of the sequence are comparable,

The gradient phase is characterized by a descent property

I
-V 
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on the augmented functional J, which implies a descent pro-

perty on the functional I. The restoration phase is charac-

terized by a descent property on the constraint error P. The

gradient stepsize and the restoration stepsize are chosen

such that the restoration phase preserves the descent property

of the gradient phase. Hence, the value of the functional I

at the end of any complete gradient—restoration cycle is

smaller than the value of the same functional at the beginning

c’~E that cycle.
V 

Ei ght numerical examples are presented to illustrate

I the performance of the algorithms associated with Problem P1

I and Problem P2. The numerical results show the feasibility

as well as the convergence characteristics of these algorithms.

I
I
I
I
I
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